
Python for Spatial Data Analysis
Module GG3209 - Second Part

Dr. Fernando Benitez-Paez

2023-02-23

Table of contents

Getting started 3

Content 4

Introduction 9
Slides . 9
Installing and setting up your Python environment 9
Python Package Manager – Mini-Conda : . 10
Installing a python package manager – Mamba . 14

Working with tabular Data 15

Working with Spatial Data 16

Unsupervised statistical learning – Clustering 17

Auxiliary Data 18

References 19

2

Getting started

Welcome to the second part of the module of GG3209 Spatial Analysis with GIS. This
part will take advantage of the initial part, which provided you with a solid understanding
of spatial data formats (vector&raster) and use them to perform multiple types of analysis
like the so-called Multi-Criteria Evaluation (MCE) using the widely popular Open-Source GIS
tool, QGIS.

Now in this second part, you will be guided to install, handle and use another powerful tool
in the geospatial field, Python. It is a free and open-sourced scripting language that was
commonly used to automate tasks in the GIS world. Nowadays is one of the most popular
programming languages, especially for GIScience. It is widely used in the private, public sectors
and academia for cutting-edge research, where scripts, front-end and back-end components are
created using this language. Python is also widley popular as a easy-to-code programming
language to deploy new methods, share knowledge, list and fetch data, and run spatial analysis
through multiple scientific fields.

In fact, most companies, or institutes where you probably want to apply once you finish your
degree, will be happily interested in your development skills using Python and will validate
your current ork in platforms like GitHub, where you can share and disseminate your project.
At this stage whether you are student of Geography or Sustainable Development, you probably
are familiar with R and its powerful capacity for spatial statistics. Now this module aims to
introduce you Python which is mainly used for scalable and robust spatial analysis, front-end
applications and process vast among of data. Every day, more packages and code-repositories
are shared and maintained for easy use and installation, allowing developers or analysts from
all backgrounds and expertise use and integrate them into their own code.

This part of the module and the lab (technical practice) are meant to be an introduction to
Python and some of the spatial libraries. Like any other new language, you need to learn
the basic rules (syntax) to write your own scripts, and soon with practice, you will become a
python developer.

3

https://www.st-andrews.ac.uk/subjects/modules/catalogue/?code=GG3209&academic_year=2022%2F3
https://qgis.org/
https://github.com/
https://www.r-project.org/

Content

The content included in this module stands to be a brief introduction to Python where you get
familiar with multiple concepts up to now new for most of you, we will cover the basis of the
programming logic, Python, Version Control (essential for reproducibility and open science)
and some of the main libraries for geospatial analysis.

There are many other concepts and interesting exercises we could apply to learn and see the
potential of Python in handling spatial data. However we have designed this part in the way
you can see the difference between using GIS tools (user-interface based) and creating code to
run script routines. As any other new language the best way to master it is through constant
practice. So don’t get stress out if you find out this module difficult or different, you will
slowly get better and efficient creating new scripts.

Note

If you think this is the line of work you would like to pursue, you can learn more about
in the module GG4257 - Urban Analytics: A Toolkit for Sustainable Urban Development
where we have more time to properly described other libraries, more practical exercises,
and use Python for more advance analysis.

The module is structured in the following lectures including the correspondent practical Lab.

• Introduction to Python, Jupyter Notebooks, and GIT
• Working with tabular data (NumPy, Pandas)
• Working with spatial data in Python (GeoPandas, Rasterio)
• Clustering analysis

4

https://www.st-andrews.ac.uk/subjects/modules/catalogue/?code=GG4257&academic_year=2023%2F4

Advisement

Tip

Do not be afraid of failure or getting errors, even during the installation process; it has
happened to all of us, regardless of the level of expertise or number of projects created.
In programming, failure is part of the process; The key is to find the basis of any
issue and understand how code, logic, and syntax work in harmony to get the results you
are expecting.

Important

All the work described here can be executed in the computer labs, ad we highly rec-
ommend you use that environment for all the practical exercises included in this book.
However we have also integrated instructions for you to install a specific list of compo-
nents to get an essential but scalable environment that allows you to write, clone, debug
and execute code for this course.

5

Assessment

This part of the module is assessed by 100% coursework

6

University Staff

Module Co-ordinators: Dr Urška Demšar or Dr Fernando Benitez-Paez

Office hours: By appointment online and live during the labs

Lab assistants: Dr Charlotte van der Lijn , Ali Moayedi, Benjamin Ong, Georg Kodl

7

https://www.st-andrews.ac.uk/geography-sustainable-development/people/ud2/
https://www.st-andrews.ac.uk/geography-sustainable-development/people/mfbp1
https://www.st-andrews.ac.uk/geography-sustainable-development/people/cjcvdl1/

Our Research

If you want to know more about why spatial data holds the key to unlocking a deeper un-
derstanding of our planet and its intricate systems. Let’s BEGIN a spatial and data-driven
conversation and be part of our multidisciplinary group in St Andrews. https://begin.wp.st-
andrews.ac.uk/

8

https://begin.wp.st-andrews.ac.uk/
https://begin.wp.st-andrews.ac.uk/

Introduction

In this first week we will cover the introduction to Python, why is it important, the software
components required to have a simple python environment to work with this programming
language, relevant and basic concepts as well the description of the workflow of version control.
In this week we have lof of work and concepts to work on, but luckily this will stablish all the
concepts and components we need for the rest of the course.

Slides

Click here to open the slides in a separate tab Week 1 - Slides

Installing and setting up your Python environment

Figure 1: Source: https://xkcd.com/1987/

9

https://mfbenitezp.github.io/PY4SA_Slides/week1_slides.html#/title-slide

Perhaps the first exercise that helps you get a sense of what is like of working with Python
is setting up your first Python Environment - PyEnv. A PyEnv is an independent space
where you install all the packages, python version and software components you would need
to write and run your scripts. Although is not a compulsory activity, it is recommended to
do it before you jump to write and deploy python scripts. It is also relevant that you feel
comfortable working with the Terminal or Command-Prompt in your operating system,
whether it is a Windows, Mac, or Linux computer.

Technically you could manually install every single library we need. However, we will use a
predefined Python environment file that includes all the packages and the Python interpreter
we will need for this course. The reason for doing this, is because installing Python libraries
and its dependencies can get very tricky and confusing, depending on the operating system,
the version, the path where we install, the type of users, even the package manager that
suppose to help us can actually be a source of confusion. So, the best way and certainly the
most secure way is using a unified single environment file and a package manager to create
our Python Environment - PyEnv.

Virtual Python Environments:

Virtual environment in python is a programming environment which works in a way that the
Python interpreter, libraries, and scripts installed into it are isolated from the ones installed
in other virtual environments (or used by the operating system, important in macOS). This
ensures that all the installed packages work nicely together. You can create multiple
environments on your computer for different projects (having e.g., different versions of Python
and specific libraries), and you can swap easily between environments by activating them from
the command prompt with a single command. There will be instructions to doing that in the
following sections.

Python Package Manager – Mini-Conda :

Let’s start with the package manager, we will use Conda, more specifically Mini-Conda (a
lighter version of Conda), which is a package, dependency and environment management
for any language including Python. It is an open-source component, and can be installed
on Windows, macOS, and Linux. With MiniConda you could quickly installs, runs, and
updates packages and their dependencies. Mini-Conda easily creates, saves, loads, and switches
between environments on your local computer.

10

Important

For MacOS users, please be aware that macOS already includes an old version of
Python, so it is needed to install an updated version of Python that works with the other
packages and dependencies that we need for this course.

Got to: https://docs.conda.io/en/latest/miniconda.html and get the installer based on your
operating system.

Once you have downloaded the installer, double click on the installer file to install it. In
general, you could follow the default options, but for this course, make sure you pick the
following:

1. Select “Just Me” during the installation, and MiniConda will only be available for the
current user. This will not require any administrator rights for the installation.

11

https://docs.conda.io/en/latest/miniconda.html

2. Make sure you pick all the advanced installation options.

12

3. After the installation is complete, you can validate that python and MiniConda were
installed appropriately by running the following commands in your terminal or command
prompt.

Open the Anaconda Prompt (miniconda3) or Terminal for macOS, from the Start menu
(Apps) and run the command conda ––version, it should return something like.

13

You might have noticed that I also ran the command python ––version this one is to validate
the python version you have in your system (e.g., 3.10.9)

If you have any problems with the Miniconda installation, you can find some installation
tips on the Miniconda website.

Installing a python package manager – Mamba

Ok, now your computer has MiniConda installed; the next step is installing a python package
manager. We will use the python package manager called Mamba to handle the installation of
python packages in Miniconda. This is particularly important as mamba will help us ensure
everything we install or remove is consistent. This can be very tedious work, so Mamba is a
very convenient tool for the consistency of our virtual environments. Having a python package
manager is not always a requirement when you set your virtual environment but will make
your life easier when you start to create multiple environments.

1. Open a terminal window or command prompt in Windows (as an admin user) and run
the following command:

conda install mamba -n base -c conda-forge

2. If you get a message asking you to confirm the installation of new packages type yes and
Enter

14

https://docs.conda.io/en/latest/miniconda.html

Working with tabular Data

This lecture

See Knuth (1984) for additional discussion of literate programming.

15

Working with Spatial Data

This is a book created from markdown and executable code.

See Knuth (1984) for additional discussion of literate programming.

16

Unsupervised statistical learning – Clustering

This is a book created from markdown and executable code.

See Knuth (1984) for additional discussion of literate programming.

17

Auxiliary Data

This is a book created from markdown and executable code.

See Knuth (1984) for additional discussion of literate programming.

18

References
Knuth, Donald E. 1984. “Literate Programming.” Comput. J. 27 (2): 97–111. https://doi.

org/10.1093/comjnl/27.2.97.

19

https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1093/comjnl/27.2.97

	Getting started
	Content
	Introduction
	Slides
	Installing and setting up your Python environment
	Python Package Manager – Mini-Conda :
	Installing a python package manager – Mamba

	Working with tabular Data
	Working with Spatial Data
	Unsupervised statistical learning – Clustering
	Auxiliary Data
	References

